On the Hardness and Inapproximability of Optimization Problems on Power Law Graphs
نویسندگان
چکیده
The discovery of power law distribution in degree sequence (i.e. the number of vertices with degree i is proportional to i−β for some constant β) of many large-scale real networks creates a belief that it may be easier to solve many optimization problems in such networks. Our works focus on the hardness and inapproximability of optimization problems on power law graphs (PLG). In this paper, we show that the Minimum Dominating Set, Minimum Vertex Cover and Maximum Independent Set are still APX-hard on power law graphs. We further show the inapproximability factors of these optimization problems and a more general problem (ρ-Minimum Dominating Set), which proved that a belief of (1 + o(1))-approximation algorithm for these problems on power law graphs is not always true. In order to show the above theoretical results, we propose a general cycle-based embedding technique to embed any d-bounded graphs into a power law graph. In addition, we present a brief description of the relationship between the exponential factor β and constant greedy approximation algorithms. keyword: Theory, Complexity, Inapproximability, Power Law Graphs
منابع مشابه
New techniques for approximating optimal substructure problems in power-law graphs
The remarkable discovery of many large-scale real networks is the power-law distribution in degree sequence: the number of vertices with degree i is proportional to i−β for some constant β > 1. A lot of researchers believe that it may be easier to solve some optimization problems in powerlaw graphs. Unfortunately, many problems have been proved NP-hard even in power-law graphs. Intuitively, a t...
متن کاملImproved Approximation Lower Bounds for Vertex Cover on Power Law Graphs and Some Generalizations
We prove new explicit inapproximability results for the Vertex Cover Problem on the Power Law Graphs and some functional generalizations of that class of graphs. Our results depend on special bounded degree amplifier constructions for those classes of graphs and could be also of independent interest.
متن کاملInapproximability of Dominating Set in Power Law Graphs
We give logarithmic lower bounds for the approximability of the Minimum Dominating Set problem in connected (α, β)-Power Law Graphs. We give also a best up to now upper approximation bound on the problem for the case of the parameters β > 2. We develop also a new functional method for proving lower approximation bounds and display a sharp phase transition between approximability and inapproxima...
متن کاملInapproximability of dominating set on power law graphs
We give logarithmic lower bounds for the approximability of the Minimum Dominating Set problem in connected (α, β)-Power Law Graphs. We give also a best up to now upper approximation bound on the problem for the case of the parameters β > 2. We develop also a new functional method for proving lower approximation bounds and display a sharp phase transition between approximability and inapproxima...
متن کاملThe zoo of tree spanner problems
Tree spanner problems have important applications in network design, e.g. in the telecommunications industry. Mathematically, there have been considered quite a number of maxstretch tree spanner problems and of average stretch tree spanner problems. We propose a unified notation for 20 tree spanner problems, which we investigate for graphs with general positive weights, with metric weights, and...
متن کامل